Modelling consumer credit risk via survival analysis

نویسندگان

  • Ricardo Cao
  • Juan M. Vilar
  • Andrés Devia
چکیده

Credit risk models are used by financial companies to evaluate in advance the insolvency risk caused by credits that enter into default. Many models for credit risk have been developed over the past few decades. In this paper, we focus on those models that can be formulated in terms of the probability of default by using survival analysis techniques. With this objective three different mechanisms are proposed based on the key idea of writing the default probability in terms of the conditional distribution function of the time to default. The first method is based on a Cox’s regression model, the second approach uses generalized linear models under censoring and the third one is based on nonparametric kernel estimation, using the product-limit conditional distribution function estimator by Beran. The resulting nonparametric estimator of the default probability is proved to be consistent and asymptotically normal. An empirical study, based on modified real data, illustrates the three methods. MSC: 62P20, 91B30, 62G05, 62N01

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling Credit Risk in portfolios of consumer loans: Transition Matrix Model for Consumer Credit Ratings

The corporate credit risk literature has many studies modelling the change in the credit risk of corporate bonds over time. There is far less analysis of the credit risk for portfolios of consumer loans. However behavioural scores, which are commonly calculated on a monthly basis by most consumer lenders are the analogues of ratings in corporate credit risk. Motivated by studies in corporate cr...

متن کامل

Comparisons of linear regression and survival analysis using single and mixture distributions approaches in modelling LGD

Estimating Recovery Rate and Recovery Amount has become important in consumer credit because of the new Basel Accord regulation and because of the increase in number of defaulters due to the recession. We compare linear regression and survival analysis models for modelling Recovery rates and Recovery amounts, so as to predict Loss Given Default (LGD) for unsecured consumer loans or credit cards...

متن کامل

Consumer finance: challenges for operational research

Consumer finance has become one of the most important areas of banking both because of the amount of money being lent and the impact of such credit on the global economy and the realisation that the credit crunch of 2008 was partly due to incorrect modelling of the risks in such lending. This paper reviews the development of credit scoring,-the way of assessing risk in consumer finance-and what...

متن کامل

Investigating the Theory of Survival Analysis in Credit Risk Management of Facility Receivers: A Case Study on Tose'e Ta'avon Bank of Guilan Province

Nowadays, one of the most important topics in risk management of banks, financial, and credit institutions is credit risk management. In this research, the researchers used survival analytic methods for credit risk modeling in terms of the conditional distribution function of default time. As a practical task, the authors considered the reward credit portfolio of Tose'e Ta'avon Bank of Guilan P...

متن کامل

A time-dependent proportional hazards survival model for credit risk analysis

In the consumer credit industry, assessment of default risk is critically important for the financial health of both the lender and the borrower. Methods for predicting risk for an applicant using credit bureau and application data, typically based on logistic regression or survival analysis, are universally employed by credit card companies. Because of the manner in which the predictive models...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009